B120 Dutall Triangular Bollari, Oontemporary Sorios

The DuraLED LED Triangular Bollard with choice of lenses is designed to replace HID lighting systems up to 50 w MH or HPS. The triangular shape provides a slender and unobtrusive appearance for pedestrian and parking area lighting for office parks, educational and medical facilities, multi-family housing, walkways and landscape accents.

Specifications and Features:

Housing:

Extruded Aluminum Housing with Flush Mounting
Base, Flat Top. Bollards Can Be Cut to
Custom Lengths Upon Request.

LISTING \& RATINGS:

CSA: Listed for Wet Locations, ANSI/UL 1598, 8750
IP66 Sealed LED Compartment.

Finish:

Textured Architectural Bronze or Black Powdercoat Finish Over a Chromate Conversion Coating. Custom Colors Available Upon Request.

StYLE:

Specially Designed White Cone Reflector that Minimizes Diode Brightness

Lens:

Clear UV-Stabilized Polycarbonate or SoftLED LumaLens Opal UV-Stabilized Polycarbonate Vandal-Resistant Lens.

Mounting Options:

Mounting Kit with 8" Zinc-Plated Anchor Bolts, Included.

Duraled LeD:

Aluminum Boards

Wattage:

Array: 12w, System: 11.8w; (50w HID Equivalent)

Driver:

Electronic Driver, 120-277V, 50/60Hz; Less Than 20\% THD and PF>0.90. Standard Internal Surge Protection 2kV. 0-10V Dimming Standard for a Dimming Range of 100% to 10%; Dimming Source Current is 150 Microamps.

Controls:

Fixtures are NOT Designed for Use with Line Voltage Dimmers.

Warranty:

5 -Year Warranty for $-40^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$ Environment.
See Page 2 for Projected Lumen Maintenance Table.

B124	F	1K12	J					
Model	Optic	Wattage	Driver	CCT	Lens	Color	Height	Options
B12Q=DuraLED Triangular Bollard, Contemporary Series	$\begin{aligned} & \text { F=Wide Beam } \\ & \text { Spread } \end{aligned}$	1x12=12w	i $=120-277 \mathrm{~V}$	$\mathbf{3 K}=3000 K$ $\mathbf{4 K}=4000 \mathrm{~K}$ $\mathbf{5 K}=5000 \mathrm{~K}$		Z=Bronze B=Black C=Custom (Consult Factory)		$\mathbf{S F}=$ Single Fuse* DF=Double Fuse* $\mathbf{S P}=$. *120-277V Models Only
							*Consult Factory. 15" Minimum.	

C=Clear UV-Stabilized Polycarbonate Vandal-Resistant Lens
L=SoftLED LumaLens Opal UV-Stabilized Polycarbonate Vandal-Resistant Lens

DuraLED TECHNOLOGY

IP66
${ }^{\text {us }}$

B120 DuralED Triangmar Bollart,

Gontemporary Series

Photometric Data

B12QF1X12U5KC

Type V, Clear Lens
Grid in feet, Mounting Height = 3 ft .

B12QF1X12U5KL

Type V, LumaLens
Grid in feet, Mounting Height $=3 \mathrm{ft}$.

Photometric Performance

Wattage (Catalog Logic)		$\begin{gathered} 12 W \\ (1 \times 16) \end{gathered}$
Optic	put Watts	11.8W
	CCT	Delivered Lumens
B12 with Clear Lens F=Type V Optic	3000K	1,221
	4000K	1,271
	5000K	1,320
	BUG Rating	B1-U3-G1
B12 with LumaLens F=Type V Optic	3000K	780
	4000K	812
	5000K	843
	BUG Rating	B0-U3-G1

Projected Lumen Maintenance

Data shown for 5000 CCT		Compare to MH				
TM-21-11	Input Watts	Initial	25,000 Hrs	50,000 Hrs	100,000 Hrs	Calculated LED Life
L70 Lumen Maintenance @ $\mathbf{2 5}^{\circ} \mathrm{C} / 77^{\circ} \mathrm{F}$	All wattages up to and including 12w	1.00	0.95	0.90	0.80	147,000
L70 Lumen Maintenance @ $50^{\circ} \mathrm{C} / 122^{\circ} \mathrm{F}$		1.00	0.89	0.78	0.55	67,000
L80 Lumen Maintenance @ $40^{\circ} \mathrm{C} / 104{ }^{\circ} \mathrm{F}$		1.00	0.92	0.85	0.70	66,000

NOTES:

1. Projected per IESNA TM-21-11. Data references the extrapolated performance projections for the base model in a $25^{\circ} \mathrm{C}$ ambient, based on 10,000 hours of LED testing per IESNA LM-80-08.
2. Compare to MH box indicates suggested Light Loss Factor (LLF) to be used when comparing to Metal Halide (MH) systems.
