HTU430B

$15-30 \mathrm{~V}$
DC

IO-Link

- Function largely independent of surface properties, ideal for detection of liquids, bulk materials, transparent media, ...
- Small design at long operating range
- Temperature-compensated operating range
- 2 independent PNP switching outputs
- NEW - Both outputs can easily be taught using a button
- NEW - Stable all-metal design
- NEW - Process data and configuration via IO-Link interface
- NEW - Five operating modes: scanning, synchronous, multiplex, activation and throughbeam operation

Accessories:

(available separately)

- Mounting systems
- Cables with M12 connector (K-D ...)
- Teach adapter PA1/XTSX-M12 (Part no. 50124709)
- USB IO-Link master 2.0 (Part no. 50121098)

ADVANCED ultrasonic sensors with 2 switching outputs
Dimensioned drawing

A Control button 2
B Control button 1
C Indicator diodes
D Active sensor surface

Electrical connection

Technical data

Ultrasonic specifications

Operating range ${ }^{1)}$
Adjustment range
Ultrasonic frequency
Typ. opening angle
Resolution of switching output
Direction of beam
Accuracy
Reproducibility
Switching hysteresis
Temperature drift

Sensor operating modes

IO-Link
SIO

Time behavior

Switching frequency
Response time
Readiness delay

Electrical data

Operating voltage $U_{B}{ }^{3}$)
Residual ripple
Open-circuit current
Switching output
Function (PNP)
Output current
Switching range adjustment
Changeover NO/NC

Indicators

Yellow LED
Yellow LED, flashing
Green LED
Green LED flashing

Mechanical data

Housing
 Weight

Ultrasonic transducer
Connection type
Installation position

Environmental data

Ambient temp. (operation/storage)
Protective circuit 5)
VDE protection class
Degree of protection
Standards applied
Certifications

HTU430B-3000.X3/..

$300 \ldots 3000 \mathrm{~mm}$ 2)
$300 \ldots 3000 \mathrm{~mm}$
120 kHz
15°
1 mm
Axial
$\pm 0.5 \%$ of end value ${ }^{1)}$
$\pm 0.15 \%$ of end value ${ }^{1)}$
25mm
$\pm 1.5 \%$ of end value 1)

COM2 (38.4kBaud)
Is supported
4 Hz
1.6 Hz

125 ms
< 300ms

SIO mode: $15 \ldots 30 \mathrm{~V}$ DC (incl. $\pm 10 \%$ residual ripple), COM2 mode: $18 \ldots 30 \mathrm{VDC}$ (incl. $\pm 10 \%$ residual ripple)
$\pm 10 \%$ of U_{B}
$\leq 50 \mathrm{~mA}$
OUT1:1 x PNP transistor, IO-Link SIO mode,
OUT2:1 x PNP transistor, configurable
$2 \times$ NO contact, reversible
SIO mode: max. 150 mA per contact,
COM2 mode: max. 100 mA per contact
OUT1: control button 1 or teach input
OUT2: control button 2 or teach input
OUT1: control button 1 or teach input
OUT2: control button 2 or teach input

OUT1: object detected
Teach-in / teaching error / cable short circuit
Object within the operating range
IO-Link communication
All metal - brass, nickel-plated
110 g
215 g
Piezoceramic 4)
HTU430B-6000.X3/..
$\left.600 . . .6000 \mathrm{~mm}^{2}\right)$
$600 \ldots 6000 \mathrm{~mm}$
75 kHz

50 mm

M12 connector, 5-pin
Any
$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C} / \quad-25^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
1, 2, 3
III
IP 67 and IP 68
EN 60947-5-2
UL 508, C22.2 No.14-13 3) 6) 7)

1) At $20^{\circ} \mathrm{C}$
2) Target: $100 \mathrm{~mm} \times 100 \mathrm{~mm}$ plate
3) For UL applications: use is permitted exclusively in Class 2 circuits according to NEC
4) The ceramic material of the ultrasonic transducer contains lead zirconium titanate (PZT)
5) $1=$ short-circuit and overload protection, $2=$ polarity reversal protection, $3=$ wire break and inductive protection
6) These proximity switches shall be used with UL Listed Cable assemblies rated 30V, 0.5 A min,
in the field installation, or equivalent (categories: CYJV/CYJV7 or PVVA/PVVA7);
Use tool for buttons
7) Ambient temperature $85^{\circ} \mathrm{C}$. Use same voltage supply for all circuits.

Diagrams

HTU430B-3000...-M12

Typ. response behavior

HTU430B-6000...-M12

Notes

Observe intended use!

$\stackrel{\leftrightarrow}{\leftrightarrows}$ This product is not a safety sensor and is not intended as personnel protection.
${ }^{4}$) The product may only be put into operation by competent persons.
$\stackrel{y}{ } \Rightarrow$ Only use the product in accordance with its intended use.

HTU430B

Part number code

Operating principle

HTU	Ultrasonic sensor, scanning principle, with background suppres- sion
DMU	Ultrasonic sensor, distance measurement

Series
430B 430B Series, cylindrical M30 construction

Operating range in mm
$3000 \quad 300 \ldots 3000$
$6000 \quad 600 \ldots 6000$

Equipment (optional)
X "Advanced" design
3 Teach button on the sensor

Pin assignment of connector pin 4 / black cable wire (OUT1)
4 PNP output, NO contact preset
P PNP output, NC contact preset
L IO-Link communication or push-pull (SIO)

Pin assignment of connector pin 2 / white cable wire (Teach-IN)
T Teach input

Pin assignment of connector pin 5 / gray cable wire (OUT2)

4	PNP output, NO contact preset
P	PNP output, NC contact preset
V	Analog voltage output $0 \ldots 10 \mathrm{~V}$
C	Analog current output $4 \ldots 20 \mathrm{~mA}$
X	Connection not assigned (n. c.- not connected)

Connection technology
M12 M12 connector, 5-pin

Order guide

The sensors listed here are preferred types; current information at www.leuze.com.

	Designation	Part no.
Operating range		
$300 \ldots 3000 \mathrm{~mm}$	HTU430B-3000.X3/LT4-M12	50124273
$600 \ldots 6000 \mathrm{~mm}$	HTU430B-6000.X3/LT4-M12	50142209

Device functions and indicators

The sensor has two buttons for adjusting output OUT1 and output OUT2. Alternatively, all adjustments can also be made via IOLink. The multi funct teach input can be used to perform the 1-point teach and the changeover of the switching function (NO contact/NC contact).

Switching behavior

Note!
The switching behavior is not defined in the dead zone.

Switching behavior with 2-point window-teach as a function of the switching function

Switching function configured as	First taught object distance	Second taught object distance	Output switching behavior	
NO (normally open) NC (normally closed)	Far	Close		
	Close	Far		

Note!

In measurement operation, the yellow and green LED only indicate the behavior of output OUT1.
The behavior of output OUT2 is not indicated.
The 2-point window-teach can be configured either with the control buttons or via the IO-Link interface. Adjustment via the teach input is not possible.

HTU430B

Adjustment of the switching points (Teach) using the control buttons

The two switching points of the sensor are both set to 3000 mm or 6000 mm (static 1-point teach) on delivery.
By means of a simple operating procedure, the switching points for each output can be individually taught to an arbitrary distance within the operating range with 1 -point teach (static) or 2-point window-teach (static).
Moreover, the output function can be switched from NO contact (NO - normally open) to NC contact (NC - normally closed). A button is permanently assigned to each output for the setting (see dimensioned drawing).

1-point teach (static)	2-point window-teach (static) ${ }^{\text {1) }}$
1. Place object at desired switching distance.	1. First, place object at desired switching distance for switching point 1.
2. To adjust output OUT1, press button 1, to adjust output OUT2, press button 2 for $2 \ldots 7$ s until the yellow LED flashes at 3 Hz .	2. To adjust output OUT1, press button 1, to adjust output OUT2, press button 2 for $7 \ldots$ 12s until the yellow and green LED flash alternately at 3 Hz .
3. Release the teach button to complete the teach event. The current object distance has been taught as the new switching point.	3. Release the button. The sensor remains in teach mode and the LEDs continue to flash.
4. Error-free teach: LED states and switching behavior according to the diagram shown above. Faulty teach (object may be too close or too far away - please note operating range): yellow LED flashes at 5 Hz until an error-free teach event is performed. The affected output is inactive as long as there is a teach error.	4. Then, place the object at the desired switching distance for switching point 2. Note: the minimum distance between the switching points is as follows
	5. Briefly press the teach button again to complete the teach event. The switching window was taught in.
	6. Error-free teach: LED states and switching behavior according to the diagram shown above. Faulty teach (object may be too close or too far away - please note operating range): green and yellow LEDs flash at 8 Hz until an error-free teach event is performed.

1) See table "Switching behavior with 2-point window-teach as a function of the switching function"

Note!
All operating functions are identical for outputs OUT1 and OUT2.

Adjusting the switching function (NO/NC) using the control buttons

The control buttons can be used to switch the output function from NO contact to NC contact (or vice versa).
To do this, proceed as follows:

Action / Description	Control button	Indicator diode GREEN		
Changeover of the switching function:				
Switching outputs OUT1 and OUT2 are set as NO contact ex works. If the switching function is changed, the respective switching output is changed to the opposite state (toggled).	Both LEDs flash alternately for a short time at 3Hz.			
Press the button for the desired				
switching output for longer than				
12s.			\quad	If the yellow LED is then ON,
:---:				
the output functions as an NO				
contact.				
If the yellow LED is then OFF,				
the output functions as an NC				
contact.				

Note!

For 2-point window-teach, the switching behavior is dependent on the selected object distances for switching points 1 and 2. See previous page!

Adjusting the switching points (teach) via the teach input

The switching points of the sensor outputs OUT1/OUT2 are set to 3000 mm or 6000 mm on delivery.
By means of a simple teach event, the two switching points can be individually taught to an arbitrary distance within the operating range. The Leuze PA1/XTSX-M12 Teach Adapter can be used for this purpose. The adapter can also be used to easily switch the output function from NO contact to NC contact.

1-point teach of output OUT1	1-point teach of output OUT2
1. Place object at desired switching distance.	1. Place object at desired switching distance.

Note!

Please note that the switching point is taught when GND is connected and the output function is reversed when UB is connected. If no sensor action is desired, pin 2 must remain unconnected!
The 2-point window-teach can be configured either with the control buttons or via the IO-Link interface. Adjustment via the teach input is not possible.

Adjusting the switching function (NC/NO) via the teach input

The switching function of both sensor outputs is set to normally open (NO) on delivery.
If the switching function is changed, the switching output is changed to the opposite state (toggled).

Changeover of the switching function of output OUT1	Changeover of the switching function of output OUT2
1. To change the switching function, connect input Teach-IN to UB for $2 \ldots 7 \mathrm{~s}$ (Leuze teach adapter: position "Teach- U_{B} "). The current state of output OUT1 is frozen while the adjustment is made.	1. To change the switching function, connect input Teach-IN to UB for $7 \ldots$ 12s (Leuze teach adapter: position "Teach-UB"). The current state of output OUT2 is frozen while the adjustment is made.
2. The green and yellow LEDs flash alternately at 2 Hz . The switching function was changed over. The switching behavior corresponds to the diagram shown above.	2. The green and yellow LEDs flash alternately at 5 Hz . The switching function was changed over. The switching behavior corresponds to the diagram shown above.

IO-Link interface

The ultrasonic sensor features an IO-Link interface acc. to specification V1.1. and satisfies the Smart Sensor Profile.
As a result, the sensor can easily, quickly and, thus, economically be configured and diagnostic information read out. With a small amount of effort, the sensor can also be integrated in a control.

Overview of the configuration options via IO-Link

Function block	Function	Description
Operating mode	Standard operation	The sensor operates as a diffuse sensor with background suppression.
	Multiplex operation	A max. of 10 sensors - 1 master and 9 slaves - can be wired together in a network. To do this, the sensors must be electrically connected with one line. The master generates a timing signal and all networked sensors are activated with time-delay.
	Synchronous operation	A max. of 10 sensors - 1 master and 9 slaves - can be wired together in a network. To do this, the sensors must be electrically connected with one line. The master generates a timing signal and all networked sensors are activated simultaneously.
	Activation operation	The sensor can be activated through an external signal.
	Operation as throughbeam sensor	The sensor can either be configured as a scanner or as a throughbeam sensor. Operation as a throughbeam sensor requires 2 sensors, which are electrically connected through one line.
Switching outputs OUT1 / OUT2	Switching point 1/2	The switching points can be directly entered as distance value in mm .
	Switching output (OUT1 and OUT2)	Adjustment as PNP or NPN switching output.
	Switching function	Adjustment as NC / NO contact. ${ }^{1)}$
	Switching behavior in the case of error	The switching behavior of output OUT1 of the sensor, for objects which are located outside of the operating range, can be adjusted.
	2-point behavior	If a switching output is to operate with 2 switching points, a choice can be made between 2-point window-teach (factory setting) or 2-point teach (e.g. for simple pump controls with minimum and maximum fill levels).
	Delay times	The time module can be used to configure a switch-on or switch-off delay at the output. This delay time is dependent on the update interval of the respective device and is calculated using the following formula: Delay [ms] = Update interval [ms] * Switch-on/-off delay
	Teach switching output OUT1	The switching output OUT1 can be taught via the IO-Link interface.
	Teach offset	An additional or shorter distance at the switching point can be entered directly as a distance value in mm . This parameter applies only for 1-point teach.
	Teach lock	Adjustment for locking of control buttons.
Temperature	Temperature compensation	Adjustment option for internal (sensor works with the integrated temperature sensor) or external (with a constant application temperature, this can be manually entered. The sensor then compensates the measured values at a fixed rate with this temperature).
	Unit	Adjustment option to ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$.
	Temperature value	Entry temperature value in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ (if external temperature compensation is desired).

1) NO contact: normal switching behavior (not inverted switching);

NC contact: inverted switching behavior (inverted switching).
In addition to the configuration functions, a range of sensor information, such as sensor status, sensor diagnostics as well as the process data, can be called up.
Further information and the device-specific description of the IO-Link interface (IODD) can be found on the Internet at www.leuze.com in the Downloads area of the respective sensor.

